TEMPERATURE DISTRIBUTION IN A COMPOSITE ROD
WITH A STEP CHANGE IN THE CONDITIONS OF
BREAT TRANSFER

A. M. Andreev, E. N. Kolesnikova, UDC 536.24.01
and Yu. A. Sokovishin

A method is proposed for calculating the steady-state temperature field of a model pipe fitting,
The results are compared with test data.

We consider a situation often encountered in pipe fitting design, where the lower part of the rod struc-
ture is thermally insulated while the upper part is cooled by natural convection and radiation (Fig. 1). At
low values of the Biot number (Bi ~ 0,02-0.05) the problem can be reduced to solving a system of one-di-
mensional heat transmission equations for the individual geometrical components which are characterized
by different conditions of heat transfer. For thermally insulated components these equations are
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with the radiation energy taken as proportional to the fifth power of the absolute temperature [1}, and with
the magnitude of the generalized heat transfer coefficient Nux/ (Grx/ 4)1/ ¢ varying over the height of the
heat transfer surface,

The solutions to Egs, (1) and (2) for individual components join, with respect to temperature and
thermal flux, according to the respective boundary conditions:
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Fig. 1. Rod with thermal insulation, natural convection, and radiation,

Fig. 2. Comparisonbetween test data and calculations (Pro = 0.7,
Nug/(Gre/9/4 = 0.5, ck = 0.1, d, = 0.065 m, d, = 0.035 m, d,

= 0,014 m, d, = 0.062 m), () T, =470°K, T, = 298°K, I = 0.387

m, by = 0.09, by = 0,155, by = 0.4, by = 0.71 (1). (b) T, = 673K,

Te = 298°K, and the same dimensions (2). (c) Tj=428K, T«
=296°K, [ = 0.464 m, by = 0,241, b, = 0.295, by = 0,414, b, = 0.759 (3).

The thermal conductivity of the material is assumed, in practical calculations, to be a linear function of
the temperature:

A@)=1+cTw [l + (3, —1)9,]. (4)

The effect of convection inside enclosed cavities is accounted for by an equivalent thermal conduectivity [2]:

L
i

Ay =¢, [ﬁz (by) — By (b4)] - (5)
The heat losses through the insulation are proportional to the temperature:
q(8;) = $/R;. \ (6)

The calculation of natural convection is made difficult by the fact that, with an exponential temperature
distribution along the rod height, the temperature profile of the boundary layer is not self-adjoint and the
value of the Nuy/ (Grg/ 4)1/ ¢ complex decreases along the length coordinate [3]. In order to evaluate the
thermal flux from the surface, one may use the mean value of Nuy/(Grx/ 4)1/ 4 obtained earlier [3] for
various values of the Prandil number, but the accuracy of the calculated temperature distribution im-

proves appreciably if the linear approximation
1 !
4
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is used, where the value of [Nux/ (Grx/ 4)1/ 4]0 is taken from the self-adjoint solutions to the equations of
natural convection [4] and where coefficient ¢k is based on the decrease in the thermal flux [3], If the
initial point of the boundary layer at the thermally uninsulated rod segment does not lie at the origin of
coordinates (Fig, 1, i =4, 5), then ¢ = ¢ —by and the linear dimension in the local Nusselt and Grashof

numbers is x—13.

For a numerical solution of the problem, each of the five equations (1), (2) is reduced to a system
of two first-order equations with respect to the thermal flux uj = — A(g{)d$j/d¢ and temperature ¢;(£):

A9t = —uA@®) (=1,2 ..., 5),
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Here the boundary conditions retain their form (3), with dgj/d¢ replaced by —u;/ A(s7).

The boundary-value problem (8), (3) can be solved as a Cauchy problem, if the values of functions
uy(0) and $5(1) are given at both respective end points of the 0 < ¢ <1 interval. Since these values are
not known at the start of calculations, they must be assumed arbitrarily to the first approximation, The
sequence of integrations over the segments of the 0 = ¢ =<1 interval is governed by the singularity of sys-
tem (8) at ¢ = by and by the singularities in the boundary conditions: at ¢{ = b, and ¢ = b, the quantity [¥,(b,)
—8,(b)*’ 4 can be calculated only after the equations have been solved for the second segment (by < ¢ = by)
and the fourth segment (by = ¢ =b,). For this reason, we have adopted the following scheme: Egs. (8) are
integrated from ¢ == 0 over the first segment (0 < ¢ = by) and the second segment (b; < ¢ = b,), then in the
reverse direction from ¢ = 1 over the fifth segment (b; = £ = bg) and the fourth segment (b; < £ = by),
which makes it possible to calculate [$,(by)—4¢ 4(b4)]1 Yand, after returning to point ¢ = by, to integrate
over the third segment (b, = ¢ =< bs). Reverse integration over the fifth and the fourth segment (i = 4, 5)
makes it possible to remove the singularity of Eq, (8) at ¢ = b; and to approach the singular point as close-
ly as desired. During transition through the end points bj, the values of uj and uj +( necessary for further
integration are determined from condition (3). Imasmuch as u,(0) and #;(1) have been selected arbitrarily,
functions uy(¢) and uy(¢) as well as functions $3(¢) and #,(¢) do noi meet at first when integration is per-
formed in opposite directions from the two end points of the 0 < ¢ = 1 interval and, therefore, they must
be joined now at point ¢ = by, The real values of u;(0) and #5(1) at which $5(¢) = 4,(¢) and uz(§) = uy(¥)
at point b, are found by the Newton method. System (8) is integrated over each segment by the Runge
—Kutta scheme. The advantage of this entire procedure is its fast convergence (4-5 approximations) and
little machine time required (approximately 1 min for solving the problem on a BESM-4 computer).

The results of such a solution were checked experimentally on vertical models made of grade 0Kh18-
N10T steel, The lower part of the models was insulated with asbestos, while the protruding upper part
was cooled by natural convection in air, The base was heated in a laboratory shaft furnace, but convective
currents from the heater were kept isolated by a protective shield with a special cooling system which
maintained room temperature-at the shield surface, We examined the steady-state temperature distribu-
tions along the height and across a section of the models, also inside the enclosed cavities, The tempera-
ture at 15 control sections was measured with Chromel —~Alumel thermocoupies welded at the periphery
and at the center of a section by the capacitor welding technique, The temperature nonuniformity over a
cross section in the base part did not exceed 1°C, The temperature field of the enclosed cavity was
searched with a microthermocouple inserted through the wall along capillary porcelain insulators tightly
mounted in drilled holes. The thermocouple probe was moved across a cavity section by means of a
micrometer coordimator screw with a 0,01 mm precision, The measured temperature distribution along
the cavity height almost coincided with that along the model wall, while the temperature across a cavity
section above the thermal insulation increased toward the center by 2-4°C,

The calculated results are compared with test values in Fig, 2. The maximum discrepancy between
them does not exceed 3°C within the upper zone of the rod cavity: heat convection inside the cavity is ac-
counted for only in the boundary conditions (3), where it affects the second digit in the value of the deriva-
tive d¢/ d¢ — important for orienting the temperature curve to join together the solutions,

The proposed method reduces the computation time for the design of a pipe fitting [5] to several
minutes, which is of practical interest in an analysis of structural variants during the design stage,

NOTATION
T is the absolute temperature;
P; is the section perimeter;
Fy cross-sectional area;
Ij is the section boundary;
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Nuy = ox(x—13)/ 2
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Gry = g8(To~Tw)l?/vi;

Gry = gﬁv(To"Too)(lr'lz)g/ V%,-
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mj = PiI?/FiAc;

C; = (PiAw/Fiko)(Gry/4)1/4;

S = [Pil’ag/Fih ¢ (Tg~Teo) (Teo/100)°:
ky = Fy /Fy;3

ky = (Fy ~Fp)l /Fy AcRys

ky = (Fy~F3)/ Fy;

ky = (F3/Foleks

ks = [F3/ (Fa~F3)ley;

kg = Fy/(Fy~F3);

ky = (Fy—Fy) Ao / (Fy —F3)Ac10.7(Gry /41 /4
kg = (Awo/ Ag)1.3(Gry/ /4

kg = [asl / Ae(To—T o0 )1(T o /100)°;
£k = 0.18(Ay/ Ao)(Gry « Pry)l/4

S_ubscrigts

denotes the original of coordinates;
denotes the ambient medium;
denotes the inside cavity;

denotes the rod.

BB g O M

is the thermal resistance (o heat transfer;

are the dimensijonless temperatures;

is the dimensionless coordinate;

is the dimensionless ordinate in the boundary layer;

is the coefficient accounting for change of thermal flux at
the surface;

is the Nusselt number;

are the Grashof numbers;
is the Biot number;
is the Prandtl number;

are constant coefficients in Egs. (1), (2), and (3). For
grade 0Kh18N10T steel at 290°K = T = 900°K Ap = 8,99 W
/m-°K, c = 0,00207 (°K)7?, g5 = 0.2465 W/m?.°K5,

denotes the local value, function of the coordinate;
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